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An integrated form of the governing equations in terms of pseudopotential higher-order nonlinear and
dispersive effects is obtained by applying the reductive perturbation method for ion-acoustic solitary
waves in a collisionless unmagnetized multicomponent plasma having warm ions and two-component
nonisothermal electrons. The present method is advantageous because instead of solving an inhomo-
geneous second-order differential equation at each order, as in the standard procedure, we solve a first-
order inhomogeneous equation at each order except at the lowest. The expressions of both Mach num-
ber and width of the solitary wave are obtained as a function of the amplitude of the wave for third-
order nonlinear and dispersive effects. The variations of potential, width, and Mach number against soli-
ton amplitude are shown graphically, taking into consideration the nonisothermality of two-component

electrons in the plasma.

PACS number(s): 52.35.Mw, 52.35.Fp, 52.35.Sb

I. INTRODUCTION

During the last few years plasma physicists have be-
come more and more interested in studies of ion-acoustic
solitons, shocks, double layers, etc. in plasmas as these
have been seen to be relevant to some experimental obser-
vations and astrophysical phenomena. For the study of
ion-acoustic solitary waves in a cold plasma, Washimi
and Taniuti [1] were the first to derive the Korteweg-
DeVries (K-dV) equation by the use of the reductive per-
turbation method. Later, various authors [2-9] intro-
duced different parameters to fit the physical conditions
in the plasma and obtained important results for solitons,
some of which have been experimentally verified. But
Jones et al. [10] studied both theoretically and experi-
mentally the propagation of ion-acoustic waves in a mul-
ticomponent plasma containing ions and two types of
electrons with different thermal effects. They found that
the speed of the ion-acoustic wave is more strongly
influenced by the low-temperature electron component
than by the high-temperature component, with the de-
gree of domination by the low-temperature component
becoming extreme as the two temperatures become far
apart. Goswami and Buti [11] and others [12-20] have
thoroughly investigated the solitons and other aspects of
ion-acoustic waves in two-electron temperature plasmas
and shown the importance of cold and hot electrons in
the formation of solitons and double layers, etc. Howev-
er, more interesting results are found in the case of a mul-
ticomponent plasma consisting of nonisothermal elec-
trons. In the presence of resonant electrons, the plasma
behaves nonisothermally. Resonant electrons strongly in-
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teract with the wave during its evolution and therefore
cannot be treated assuming the Boltzmann distribution
for the electron density n, =exp(¢) as considered in an
isothermal plasma. Schamel [21,22] first considered the
nonisothermality of electrons in a plasma and showed
that the electron distribution should have an expression
given by Eq. (2) of his paper [22]. He found that an ion-
acoustic wave in the lowest order has a sech* profile in-
stead of the usual sech? profile. Later, Das, Paul, and
Karmaker [23] and others [24,25] assumed Schamel’s
plasma model and investigated the effects of nonisother-
mality of two-temperature electrons on the formation of
solitons. In this regard it is worthwhile to mention that
the inclusion of ion temperature is done only in the sense
of small corrections to the ion-acoustic solitons. In fact,
it is found that the speed of the ion-acoustic wave is
higher fro the plasma containing warm ions than for the
cold ion plasma [26-28]. Moreover, it is observed exper-
imentally by Anderson et al. [29] that the effect of Lan-
dau damping is very small when the ions are warm but
T,/T, 1.

However, from the experimental observations [30-34]
it is found that theoretically predicted values of the am-
plitude, width, and velocity of the solitary waves do not
obey the experimental results. To remove the discrepan-
cy between the theoretical and experimental results,
researchers realized the necessity of considering the
higher-order nonlinear and dispersive terms in the propa-
gation of solitary waves in a plasma. Ichikawa,
Matsuhasi, and Konno [35] were the first to examine
such higher-order effects by the reductive perturbation
method for ion-acoustic solitons in a plasma consisting of
cold ions. Considering the temperature of ions in a plas-
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ma, Lai [26] invesitgated the higher-order effect on the
ion-acoustic solitons. Kodama and Taniuti [36] recon-
sidered this problem and have shown by the method of
renormalization how to eliminate the secular terms ap-
pearing in higher-order terms of the expansion. Taking
the electrons as nonisothermal, Kalita and Bujarbarua
[37] investigated the propagation of higher-order ion-
acoustic solitary waves in a plasma. Tagare and Reddy
[38] considered the effect of higher-order nonlinearity on
ion-acoustic solitary waves in a plasma consisting of neg-
ative ions and nonisothermal electrons.

It is to be noted that previous authors have only con-
sidered second-order nonlinearity and dispersive effects
for the investigation of ion-acoustic solitons in the plas-
ma. But in the present paper we investigate the effect of
higher-order nonlinear and dispersive terms up to the
third-order approximation on the propagation of ion-
acoustic soliton waves in a plasma consisting of noniso-
thermal two-component electrons and warm ions. To get
higher-order effects we apply the pseudopotential method
[39,40] which is different from the standard method
adopted in previous investigations. Recently, Das and
Majumdar [28] have applied this method to investigate
the effects of higher-order nonlinear and dispersive terms
on the propagation of solitary waves in a plasma consist-
ing of warm ions and isothermal electrons. Applying the
reductive perturbation method, Ghosh and Das [41] in-
vestigated the higher-order contributions to the forma-
tion of solitons for a shear kinetic Alfvén wave in a low-f
plasma. In this context, it is very important to mention
that Watanabe and Jiang [42] developed a method for
higher-order solutions of a solitary wave and obtained a
fourth-order solution of a model nonlinear equation
which is valid if the normalized wave amplitude is less
than 0.5.

In Sec. II, we have derived the nonlinear evolution
equation for ion-acoustic waves in a nonisothermal plas-
ma having two-component electrons. To introduce the
nonisothermality in the plasma, we have followed the
original works of Schamel [21,22]. In Sec. III we have
found the solitary wave solution with higher-order non-
linearity and dispersive effects correct up to the third-
order approximations. From the first-order equation, i.e.,
at the lowest order, we obtain the modified K-dV (MK-
dV) soliton, which has a Sech* profile. We have extended
our calculations in the next two orders and ultimately we
get the solutions of the second- and third-order equations
for the ion-acoustic solitary wave. From the soliton solu-
tion up to the third-order approximation, the potential,
width, and Mach number have been expressed as a func-
tion of the soliton amplitude. In Sec. IV, we analyze the
results graphically for a model plasma having two-
temperature electrons in nonisothermal conditions and
compared these with that at the lowest order. We find
that higher-order nonlinear and dispersive effects tend to
increase the velocity but to decrease the width of the soli-
tons, results which are supported by the experimental re-
sults. In Sec. V, we have summarized the present work,
giving some ideas about the application and extension of
our analysis for the study of ion-acoustic solitons in a
plasma under different physical conditions.
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II. FORMULATIONS

We consider a collisionless unmagnetized plasma con-
sisting of ions having finite temperature T; together with
two types of nonisothermal electrons of which one is cold
and the other is hot, having temperatures 7,; and T, re-
spectively, under the assumption T;<<T,, T,,, and so
Landau damping is neglected. Therefore the governing
equations for such a plasma in dimensionless form are

on;
—é—t_+_(n u; ) (1)
ou; au,- o Op; 3
o Hax T ax Tax O @
op; op; ou;
» +u ,—a——+3 o =0, (3)
2
_g;%=ne1+neh_ni ’ 4)
where
T; T, T,
= , T =—_* % 5
7 T o (uT,+vT,) ®

n; n,, and n,, are, respectively, the number density of
ions, low-, and high-temperature electrons, u; is the ion
fluid velocity, p; is the ion fluid pressure, and ¢ is the
electrostatic potential. The quantities n;,n,,n.,,u;,p;,
and ¢ have been made dimensionless by ng,nq,np,
(kpTeo/m;)V?, noky Tes, and kg T /e, respectively. ng is
the equilibrium density of ions, m; is the ion mass, and
kg is the Boltzmann constant. x and ¢ have been made
dimensionless by (4me’ng /kpTe) 172 and
(m; /4me*ny)!/?, respectively. p and v are the unper-
turbed number densities of low- and high-temperature
group of electrons (u+v=1), T is the effective tempera-
ture of the plasma.

Due to the nonisothermality of two groups of elec-
trons, the densities of cold and hot electrons can be as-
sumed as [21,22]

Tef Tef 12
= —L g |erf
na=p | exp |76 lerfe | g
T T 172
+B; 1 2%expB,; ef(/) erfc |3, of R (6)
T, T,
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e P Teh Teh
T T 172
+ 85 2expB, | =9 |erfc |8, == ,
T, T,

where 3; and B3, are the ratios of the number of free and
trapped electrons in the low- and high-temperature
groups of electrons. These parameters are expressed in
the following manner:

el
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where T,;, and T,,, are the temperatures of the trapped
electrons in the low- and high-temperature groups of
electrons, and T,;, T,, are the same for free electrons.

Expanding (6) and (7) in ascending powers of ¢ we ob-
tain the expressions for cold and hot electrons as

3/2
_ ¢ |__4 _pgy|l—2¢
o=k 1 B | T VTR B
+l 5 _8(1—[3%) 5/2
2 |utvB 15712 | u+vB
3
1|/ _¢ (9)
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3
1| B
6 | utvB , (10)
where
T
3=—T—e’— . (11)
eh
Adding (10) and (11) we find
4 (ﬂb1+Vth)3/2 3
+ =14+¢—— /2
Rop T Nep ¢ 3 ( +,VB)3/2
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For a solitary wave solution we assume that the depen-
dent variables depend on a single independent variable
§=x —Vt, where V is the velocity of the solitary wave.

Using the boundary conditions
n—1, p—>1, ¢—>0 asé—>too, (14)

we obtain from (1)-(3)

u, =V 1—l] , (15)
i
pi=n}, (16)
2 2
lont+ [ ——Z——%a’ni2+VT=0. (17)
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The solution of this equation for n? satisfying the re-
quirement that n; =1 at ¢=0is

1 2_p2y122
=—1[A4A—¢—{(A—¢)"—B , 18
3 LA 7¢—1(4—¢) I (18)
where
I 2 2
=—+ B*= . 1
A S 5o 3oV (19)
From Eq. (18) n; can be expressed as
=V[(A—¢)+{(A—¢)*+B?}1/2]71/2 (20)
Expanding this in ascending powers of ¢ we get
n=14+ A0+ A,6*+ -+ -, 1)
where
A1=; , A,=60(V?—=30) 3+ 1(V?=30)72.

Vi-3o
(22)

Substituting in (4) for n; and n, +n,,, respectively, from
(21) and (12) we get

—‘Edgz App+ 238> 2+ A2+ AP - (23)
where
1
A,=1— ,
2 Vi-3o
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=2 WEB) 6oy 30) - 3(v2—30)72,
2 (u+vB)
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5 15 (,u+vB)5/2
III. SOLITARY WAVE SOLUTION
WITH HIGHER-ORDER CORRECTIONS
We stretch £ coordinates according to the relation
X=e4 25)

where € is a small parameter and is a measure of the
weakness of dispersion. Then Eq. (23) becomes

1/2 é
dx?

An integral of this equation satisfying the conditions
d¢/dX —0,¢p—0as X —>t o is

=0,0+8:8°7+ Ay +Asp> 7+ - - - . (26)

172
(B /AR P =L0,42+ 30,452+ LA,4°
+2Ap" 24 - 27

We now make the following perturbation expansion for
¢ and V:
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¢=E¢(l)+e3/2¢(2)+€2¢(3)+ cee
V= VO+€1/2V(1)+€V(2)+63/2V(3)+ cee

(28a)
(28b)

where Vy=(1+30 )12 the linear velocity of the wave.
With the expansion for V given by (28) the expansions for
A,, A;, A4, and A become

A2=61/28(21)+68(22)+63/26(23)+ S

A3=8(30) ,
A4=820)+el/28(41)+ cee (29)
As=5Y,
8(21)=2(1+30.)1/2V(1) ,
8 =2(1+30)12V D —3(1+40)VV*
8(3)=2(1+30)1/2V(3)__6(1+4U)V(1)V(2) ,
2
o _ 4 by +vB,B7%)
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8=6(1+60)(1+30)2y V) |
8 ([l,b,”‘*“\’b;(,l)BS/z)

8(50)= _
15 (I-L+'VB)5/2

Substituting the expansion (28) in (27) and equating
coefficients of various powers of € on both sides, we get a
sequence of equations for ¢'?’s and the equation for ¢'” at
each order becomes a first-order inhomogeneous
differential equation for i > 1.

A. First-order equation and its solution

In the first order, i.e., in the lowest order, which is at

the order €>/2, we get the following equation for ¢'!:
2
1 d (1) 1
2 _d%_ =78‘2"(#“)2—%8(30’(¢“’)5/2 ) 31)
Setting ¢!’ =172, we get for 1 the equation
J “) 172
Wt | Zyy-a)| (32

where a =48 /56\"). The solution of Eq. (32) for ¥ is

(l))1/2

¥=a cosh? —2—4——X:tK1 , (33)

where K| is an arbitrary constant. This gives the follow-
ing solution for ¢‘! that attains a maximum at X =0:

¢'V'=A%a,sech*y , (34
where
o 258" _ (u+vB) (35a)
L1682 (ub+vb, B2
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The width of the soliton (D) is defined as half the value of
the width of the pulse at height 0.1764 of its amplitude.
Therefore we obtain from (35b), for the order €!/? terms,
the width

D, =2(15/A)12 . (36)

The Mach number correct to order €'/2 terms of V is ob-
tained as

Vo8

M,= .
A 15V2

(37)
B. Second-order equation and its solution

In the next order, which is at the order €°, we get the
following equation for ¢(?):

%?);l Eg — [V — 5O (1)3/214(2)

=182+ 18D(p 1) . (38)
Differentiating (31) with respect to ¢! we get
d2 é“) _
dx?

By the use of this relation Eq. (38) can be expressed as
follows, where the independent variable X has been re-
placed by 7 given by (35b):

d@‘” (nln) ¢(2)_ 88‘22) (¢(1))2
dn ¢§71) 8‘2” ¢(nn

8(21)¢(1)_8(30)(¢(1))3/2 . (39)

168&0) (¢(l))3
38(21) ¢£]1)

(40)

Multiplying both sides of this equation by the integrating
factor 1/¢, D and then integrating we get the following
solution for ¢(2’

5 2a,A%8% 4 2a,A%8% 4
¢( )= —T’T] tanh’r[ sech 7’+ 8 1 sech n
2 2
4a3ns)) — :
——%T(l+tanh n)sech®n+K,sech®n tanhy ,
2

(41)

where K, is an arbitrary constant.

For a uniformly valid expansion of ¢ the ratio ¢ /¢!
should remain finite at 7—* . This demands that the
coefficient of the first term on the right hand side of (41)
must be equal to zero. Therefore we have

82'=0 (42)
which gives

3 (1+40) Ly 32 (1+40)

AZ. 43
2V, 75 V3 “

V(2)=
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Consequently the expression for ¢'®’ given by (41) be-
comes

—4a? 246"

PP = —W(l—i—tanhzn)-*—Kztanhn sech'y .
2

(44)

For ¢? to attain maximum at 7=0 we must set K, =0
and therefore the final expression for ¢ becomes

#'¥=»A3%a,(1+tanh?y)sech*y , (45)

where

__ 5u+vB)° (p+vB?)
8(ub, +vb,B"*)* | (u+vB)?

a, —120—-3| . 46)

The solitary wave solution up to second order is obtained
by using (34) and (45) in (28a) and is given by
¢2=¢(1)+¢(2)

=aqg[a;; +aytanh’*ylsechty , 47)

where ag, =A%a,; +a,A),
ap=1,
_ aA
Iz (a;+ay)) -’

(48)
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The Mach number M, correct up to V? is obtained by
using (35¢) and (43) in (28b) and is given by
8 32(1+40)A%
+ .
15v3 75V

M,=1+ 49)

Moreover, from (35b) the width of the soliton is obtained
as

D,=2(15/0M)"*np (1), (50)
where 7 D,(0) is the positive root of 7 of the following
equation:

ystanh®y+y,tanh*y+y tanh?n+y,=0 , (51)

where 3, ¥, 71, and ¥, are denoted by

V3=,
Y2=1—2ay,
(52)
Yi=an—2,
Y0=0.8236 .

C. Third-order equation and its solution

The equation at the third order, which is at the order
€’/2, can be put in the following form by the use of the re-
lation (39):

d [¢? ] _, (6?0 855 (¢(1y2 B 1283 (62)2($ 1)1/

dn ¢f’]1) (¢(7’1))2 8(21) (¢571))2 8(21) (¢fnl))2
1665 620y 1684 (¢1)}? B 328 (¢!1)772 1 (¢§72))2
8(21) (¢§71))2 38(21) (¢(1,1))2 78(21) (¢Eyll))2 2 (¢§71))2 :

Integrating this equation we get the following solution for ¢'>:

2a,A285 20,3265
¢ =— Tn sech*ytanhn+ | |A%a;+ NG
where

14023228 4428y  8a3/2A8Y

a,=— - N

? (98512 384" 78"

208232282 4428  16a32A8)
3T T T gy 3500 28 (55)
2 2 2

S 28a1A%(8{")?  8a}/2A8Y

’ 9(841)? 2180 7

and K; is an arbitrary constant.

Now for a uniformly valid expansion of ¢ the ratio
#®/¢'? must remain finite at 7—>=Foo. Therefore the
coefficient of the first term on the right hand side of (54)

] + A% 5tanh?y+A‘c;tanh*y [sech*ny—4a,A’K ;tanhn sech®y ,

(54)

must vanish and consequently we have
85=0. (56)

This equation gives the following third-order correction
to the velocity of propagation of the solitary wave:

256(1+40)? 2

V(3)=
375V}

(57)

Since 85’=0, the expression for ¢*) given by (54) be-
comes

¢¥=[A%;+ A% tanh’n+ A%, tanh*y

—4a,A%K ytanhnJsech*n . (58)
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For ¢® to attain maximum at =0 we must set K; =0
and therefore the final expression for ¢‘3) becomes

¢ =A*%a;+b;tanh?y+c,tanh*n)sech?y , (59)

where a;,b3, and c; given by (55) can be expressed as

875 -, 4
z___“+ —7
a, 2567 4b + 7€
325 -, 8
b.=—2"Gg4+4b+—-7F
3 o1 2 b 7€
c =_£a_ig
3 256 21’

where @,b, and € are given by

2
g |8 L wtB)®
? (u+vB)? ’ (uby+vb, B2 oo
6
5:(1+6a)(#+3v£32t ’ , (60Db)
(ub; +vb,B>"?)
(u+ )5( b(l)+ b(l) 5/2
o (VB b Db, B (60c)

(ub; +vb,B37%)

To obtain the solitary wave solution up to the third-
order a?proximation we substitute the values of ¢'1),¢?),
and ¢'* given by (34), (45), and (59), respectively, in the
expression for ¢ given by (28a) and we ultimately get

¢3=¢(1)+¢(2)+¢(3)
=apla;3+a,stanh?n+a,stanh*y Jsechty , (61)

where
apy=A4a;+a,A+a;A?), (62a)
ap=1, (62b)
Ma,+bsA)
ap=——"""T""+, (62¢)
a,+taAta;A
cyA?

B a, +a2)\.+a3)\'2 '

This ay; is the amplitude of the solitary wave. To find
the Mach number M correct to order €3/ terms, we sub-
stitute in (28b) for V'V, ¥®) and v given, respectively,
by (35c¢), (43), and (57) and obtain

2
M3=l=1+ 8A 32(1+4;7)x
Vo 15v3 75V¢

256(1+40)\3
375V

(63)
The width of the soliton D; is obtained from (35b),
D3 =2(15/M)"*np (1) . (64)

The positive root of 7 D}(k) is obtained from the follow-
ing equation of 7:

y stanh®n+ytanhn+yjtanh*y+yjtanh?p+y (=0,

(65)
where
Yi=ag, v3=2a,5ta;,
Ya=ap—2aptl, vi=apn—2, (66)

76=0.8236=y, .

It is to be noted that the expressions for soliton widths
as a function of soliton amplitudes may be obtained by el-
iminating the parameter A between (36) and (35a), (50)
and (48a), and (64) and (62a) for the first-order, second-
order, and third-order solitons, respectively. Next elim-
inating A between (37) and (55a), (49) and (48a), and (63)
and (62a), we get the expressions for Mach numbers as a
function of soliton amplitudes.

IV. RESULTS AND DISCUSSIONS

From the above analysis we see that the expression (34)
is the well-known first-order MK-dV soliton solution
which was obtained by Das, Paul, and Karmaker [18]
and others. The expressions (45) and (59) are the second-
order and third-order MK-dV soliton solutions. Previ-
ously authors obtained a MK-dV (second-order) solution
similar to our present result given by (45). But none of
the previous authors obtained the MK-dV soliton consid-
ering the third-order corrections. QOur expression (53)
gives the soliton solution up to the third-order contribu-
tion of the nonlinear and dispersive effect in a plasma. It
is evident from the above expressions that nonisothermal-
ity and two-component electrons have significant contri-
butions to the formation of solitons in the plasma. It is
interesting to note that the third-order soliton solution ¢,
given by (53) reduces to the second-order soliton solution
¢, given by (47), if the terms containing the third-order
nonlinear and dispersive effect are neglected, i.e.,
a;=by;=c3=0. Similarly, the second-order solution ¢,
given by (47) reduces to the first-order solution ¢, given
by (34), if we put a, =0.

To investigate the characteristics of the solitary waves,
numerical estimations are made considering a plasma
having ©=0.15, v=0.85, b,=0.15, b, =0.40, B=0.025,
0=0.02, b{1’=0.260, and b’ =0.5164, and results have
been compared for the first-order, second-order, and
third-order solitons. In fact, two-component electrons
are found in cathode discharge tubes [43] and in double
plasma (DP) machines [44]. In space and thermonuclear
plasmas, two distinct Maxwellian electron populations
with different temperatures have also been found [45,46].
Using the above data for a multicomponent plasma con-
sisting of warm ions and two-component nonisothermal
electrons, the potentials ¢,, ¢,, and ¢, given by (34), (47),
and (61), respectively, are calculated and then plotted in
Fig. 1. It is seen that the third-order potential is greater
than the second-order potential which is also greater than
the first-order potential. If the ions are assumed to be
cold, i.e., 0 =0, these potentials become smaller than that
of the warm ionic plasma. It is also observed that the
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Inxig?

P53 (0:=0) ®; (0:0.02)

¢, (0:=0) ¢, (0=0.02)

¢, (07:0.02)

Y\——»

FIG. 1. Steady ion-acoustic soliton solutions in noniso-
thermal two-component electron plasma. ...... for cold ions
(0c=0). for warm ions (o =0002).

temperature of the ions only plays a role in the sense of
small corrections to the solitary wave but the nature of
the potentials remains the same.

From (36), (50), and (64), the widths D,,D,, and D, for
the first-order, second-order, and third-order solitons are
numerically calculated and then plotted against the am-
plitude of the soliton wave (Fig. 2). It is observed that
the width decreases with the increase of the amplitude
and higher-order nonlinear and dispersive effects play a
role to increase the width for a given amplitude.

40
0y
D2
M=015 b :0.15
35k b3 D £0.85 by:0.40
£ +0.025 b= 0.26
I o :0.02 &/:0.52
=
3 30
3
251
20 ' L
o] 01 0.2 0.3

Amplitude —

FIG. 2. Dependence of widths on the amplitudes of ion-
acoustic solutions.

K. P. DAS, S. R. MAJUMDAR, AND S. N. PAUL 51

.
M = 015 b= 0.5
D = 0.85 by= 0.40
.08 g = 0.025 bi:o0.26 "
1
1 o = 002 by:o0.52 M2
@
o 1.06} M3
; [
z 7]
< 1.04f
o
b3
.02~
1 | |
0 0.1 0.2 0.3

Amplitude ——

FIG. 3. Dependence of Mach numbers on the amplitudes of
ion-acoustic solitons.

The Mach numbers M|,M,, and M; are numerically
estimated from (37), (49), and (63) for the plasma having
the parameters stated above. The Mach numbers are
then plotted in Fig. 3. It is seen that the Mach number
increases with increase of the amplitude and also by the
higher-order nonlinear and dispersive effects.

It is to be noted that various authors [30-34] have ex-
perimentally studied the behavior of ion-acoustic solitons
in plasmas. However, we have not yet seen any experi-
mental report for the ion-acoustic soliton in a plasma
having warm ions and two-temperature nonisothermal
electrons. So our present results cannot be compared
with the experimental observations.

V. CONCLUDING REMARKS

We have investigated the contributions of higher-order
nonlinear and dispersive effects on ion-acoustic solitary
waves in a plasma consisting of warm ions and two
groups of nonisothermal electrons. In the lowest order
the solitary wave has a sech® profile. We have carried out
the calculations up to the next two higher orders, i.e., up
to second and third order. Considering higher-order
corrections, the expressions for both the Mach number
and the width of the solitary wave are obtained as a func-
tion of its amplitude. In our present analysis, the reduc-
tive perturbation method is applied to an integrated form
of the governing equations in terms of the pseudopoten-
tial. The advantage of this method is that, instead of
solving an inhomogeneous second-order differential equa-
tion at each order as in the standard procedure, we are to
solve a first-order inhomogeneous differential equation at
each order except at the lowest order.

In recent years, a relativistic effect has been considered
for the investigation of ion-acoustic solitary waves in a
plasma [47]. It has been found that the presence of
streaming ions and the relativistic effect have a contribu-
tion to the formation of solitons, shocks, and double lay-
ers in the plasma [48-55]. Higher-order soliton solu-
tions, up to second-order approximations, only are ob-
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tained by using the standard mathematical technique.
Following our present method we may find the second-
order and also third-order solutions for the ion-acoustic
solitary waves in a simpler way, which would help to in-

vestigate the role of the relativistic effect as well as
higher-order contributions of nonlinearity and dispersive-
ness on the solitary wave in unmagnetized or magnetized
plasma.
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